

Clinical Application of MECHANICAL VENTILATION

Fourth Edition

David W. Chang

Clinical Application of MECHANICAL VENTILATION

David W. Chang

This is an electronic version of the print textbook. Due to electronic rights restrictions, some third party content may be suppressed. Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. The publisher reserves the right to remove content from this title at any time if subsequent rights restrictions require it. For valuable information on pricing, previous editions, changes to current editions, and alternate formats, please visit www.cengage.com/highered to search by ISBN#, author, title, or keyword for materials in your areas of interest.

Clinical Application of MECHANICAL VENTILATION

Fourth Edition

David W. Chang, Ed.D., RRT-NPS

Professor Department of Cardiorespiratory Care University of South Alabama Mobile, Alabama

Australia • Brazil • Japan • Korea • Mexico • Singapore • Spain • United Kingdom • United States

Clinical Application of Mechanical Ventilation, Fourth Edition David W. Chang

Vice President, Careers & Computing: Dave Garza

Publisher, Health Care: Stephen Helba

Associate Acquisitions Editor: Christina Gifford

Director, Development–Careers & Computing: Marah Bellegarde

Product Development Manager, Careers: Juliet Steiner

Associate Product Manager: Meghan E. Orvis

Editorial Assistant: Cassie Cloutier

Executive Brand Manager: Wendy Mapstone

Market Development Manager: Jonathan Sheehan

Senior Production Director: Wendy Troeger

Production Manager: Andrew Crouth

Senior Content Project Manager: Kara A. DiCaterino

Senior Art Director: David Arsenault

Cover Image:

© Icons Jewelry/www.shutterstock.com © Sebastian Kaulitzki/www.shutterstock.com

© 2014, 2006, 2001, 1997 Delmar, Cengage Learning

ALL RIGHTS RESERVED. No part of this work covered by the copyright herein may be reproduced, transmitted, stored, or used in any form or by any means graphic, electronic, or mechanical, including but not limited to photocopying, recording, scanning, digitizing, taping, Web distribution, information networks, or information storage and retrieval systems, except as permitted under Section 107 or 108 of the 1976 United States Copyright Act, without the prior written permission of the publisher.

For product information and technology assistance, contact us at Cengage Learning Customer & Sales Support, 1-800-354-9706

For permission to use material from this text or product, submit all requests online at **www.cengage.com/permissions** Further permissions questions can be e-mailed to **permissionrequest@cengage.com**

Library of Congress Control Number: 2012953799

ISBN-13: 978-1-1115-3958-0

ISBN-10: 1-1115-3958-8

Delmar

5 Maxwell Drive Clifton Park, NY 12065-2919 USA

Cengage Learning is a leading provider of customized learning solutions with office locations around the globe, including Singapore, the United Kingdom, Australia, Mexico, Brazil, and Japan. Locate your local office at: **international.cengage.com/region**

Cengage Learning products are represented in Canada by Nelson Education, Ltd.

To learn more about Delmar, visit www.cengage.com/delmar

Purchase any of our products at your local college store or at our preferred online store **www.cengagebrain.com**

Notice to the Reader

Publisher does not warrant or guarantee any of the products described herein or perform any independent analysis in connection with any of the product information contained herein. Publisher does not assume, and expressly disclaims, any obligation to obtain and include information other than that provided to it by the manufacturer. The reader is expressly warned to consider and adopt all safety precautions that might be indicated by the activities described herein and to avoid all potential hazards. By following the instructions contained herein, the reader willingly assumes all risks in connection with such instructions. The publisher makes no representations or warranties of any kind, including but not limited to, the warranties of fitness for particular purpose or merchantability, nor are any such representations implied with respect to the material set forth herein, and the publisher takes no responsibility with respect to such material. The publisher shall not be liable for any special, consequential, or exemplary damages resulting, in whole or part, from the readers' use of, or reliance upon, this material.

Printed in the United States of America 1 2 3 4 5 6 7 17 16 15 14 13 Dedicated with love to my wife, Bonnie and our children, Michelle, Jennifer, and Michael for their support in my professional endeavors and personal leisure activities

Contents

Preface	xxvi
Acknowledgments	XXX

CHAPTER 1: PRINCIPLES OF MECHANICAL VENTILATION

Introduction	2
Airway Resistance	3
Factors Affecting Airway Resistance	3
Airway Resistance and the Work of Breathing (ΔP)	4
Effects on Ventilation and Oxygenation	5
Airflow Resistance	5
Lung Compliance	6
Compliance Measurement	6
Static and Dynamic Compliance	7
Compliance and the Work of Breathing	10
Effects on Ventilation and Oxygenation	10
Deadspace Ventilation	10
Anatomic Deadspace	11
Alveolar Deadspace	11
Physiologic Deadspace	11
Ventilatory Failure	12
Hypoventilation	12
Ventilation/Perfusion (V/Q) Mismatch	13
Intrapulmonary Shunting	14
Diffusion Defect	15
Oxygenation Failure	16
Hypoxemia and Hypoxia	17
Clinical Conditions Leading to Mechancial Ventilation	18
Depressed Respiratory Drive	18
Excessive Ventilatory Workload	18
Failure of Ventilatory Pump	19

Summary	21
Self-Assessment Questions	21
Answers to Self-Assessment Questions	24
References	24
Additional Resources	25

CHAPTER 2: EFFECTS OF POSITIVE PRESSURE VENTILATION

Introduction	27
Pulmonary Considerations	28
Spontaneous Breathing	28
Positive Pressure Ventilation	28
Airway Pressures	29
Compliance	30
Cardiovascular Considerations	30
Mean Airway Pressure and Cardiac Output	30
Decrease in Cardiac Output and O ₂ Delivery	31
Blood Pressure Changes	31
Pulmonary Blood Flow and Thoracic Pump Mechanism	32
Hemodynamic Considerations	34
Positive Pressure Ventilation	34
Positive End-Expiratory Pressure	34
Renal Considerations	35
Renal Perfusion	35
Indicators of Renal Failure	36
Effects of Renal Failure on Drug Clearance	36
Hepatic Considerations	38
PEEP and Hepatic Perfusion	38
Indicators of Liver Dysfunction	38
Effects of Decreased Hepatic Perfusion on Drug Clearance	38
Abdominal Considerations	39
Effects of PEEP and Increased Intra-Abdominal Pressure	39
Gastrointestinal Considerations	40
Nutritional Considerations	40
Muscle Fatigue	41
Diaphragmatic Dysfunction	41
Nutritional Support	41
Nutrition and the Work of Breathing	42
Neurologic Considerations	43
Hyperventilation	43
Ventilatory and Oxygenation Failure	44
Indicators of Neurologic Impairment	44
Summary	45
Self-Assessment Questions	45
Answers to Self-Assessment Questions	48
References	48

CHAPTER 3: CLASSIFICATION OF MECHANICAL VENTILATORS

Introduction	51
Ventilator Classification	52
Ventilatory Work	52
Input Power	53
Drive Mechanism	53
Piston Drive Mechanism	54
Bellows Drive Mechanism	55
Microprocessor-Controlled Pneumatic Drive Mechanism	55
Control Circuit	56
Mechanical	56
Pneumatic	56
Fluidics	56
Electronic	57
Control Variables	57
Pressure Controller	57
Volume Controller	59
Flow Controller	59
Time Controller	59
Phase Variables	60
Trigger Variable	60
Limit Variable	61
Cycle Variable	62
Baseline Variable	62
Conditional Variable	63
Terminology of Ventilation Modes	66
Volume-Controlled Ventilation	66
Pressure-Controlled Ventilation	66
Intermittent Mandatory Ventilation (IMV)	67
Pressure Support	67
Dual Control within a Breath	68
Dual Control Breath-to-Breath	68
Pressure-Limited Time-Cycled Breaths	68
Pressure-Limited Flow-Cycled Breaths	68
	69
Proportional Assist Ventilation	69
Automatic Tube Compensation	69
Airway Pressure Release Ventilation	70
Output Waveforms	70
Pressure Waveforms	72
Volume Waveforms Flow Waveforms	73 74
Alarm Systems	75 75
Input Power Alarms	75

Х

Control Circuit Alarms	75
Output Alarms	76
Summary	76
Self-Assessment Questions	77
Answers to Self-Assessment Questions	78
References	78
Additional Resources	79

CHAPTER 4: OPERATING MODES OF MECHANICAL VENTILATION

Introduction	82
Negative and Positive Pressure Ventilation	82
Negative Pressure Ventilation	83
Positive Pressure Ventilation	84
Operating Modes of Mechanical Ventilation	84
Closed-Loop System	86
Spontaneous	86
Apnea Ventilation	87
Positive End-Expiratory Pressure (PEEP)	87
Indications for PEEP	87
Physiology of PEEP	89
Complications of PEEP	89
Continuous Positive Airway Pressure (CPAP)	91
Bilevel Positive Airway Pressure (BiPAP)	91
Indications for BiPAP	91
Initial Settings	92
Adjustments of IPAP and EPAP	92
Controlled Mandatory Ventilation (CMV)	92
Indications for Control Mode	93
Complications of Control Mode	94
Assist/Control (AC)	94
Assist Control Triggering Mechanism	94
Assist Control Cycling Mechanism	95
Indications for AC Mode	95
Advantages of AC Mode	96
Complications of AC Mode	96
Intermittent Mandatory Ventilation (IMV)	96
Synchronized Intermittent Mandatory Ventilation (SIMV)	97
SIMV Mandatory Breath-Triggering Mechanism	97
SIMV Spontaneous Breath-Triggering Mechanism	98
Indications for SIMV Mode	99
Advantages of SIMV Mode	99
Complications of SIMV Mode	100
Mandatory Minute Ventilation (MMV)	100
Pressure Support Ventilation (PSV)	102
Indications for PSV Mode	103
Adaptive Support Ventilation (ASV)	104

Copyright 2013 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s). Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

Proportional Assist Ventilation (PAV)	105
Volume-Assured Pressure Support (VAPS)	106
Pressure-Regulated Volume Control (PRVC)	107
Automode	108
Adaptive Pressure Control (APC)	108
Volume Ventilation Plus (VV+)	108
Volume Control Plus (VC+)	109
Volume Support (VS)	109
Pressure-Controlled Ventilation (PCV)	109
Airway Pressure Release Ventilation (APRV)	111
Indications for APRV	112
Biphasic Positive Airway Pressure (Biphasic PAP)	112
Inverse Ratio Ventilation (IRV)	113
Physiology of IRV	113
Adverse Effects of IRV	114
Pressure Control-IRV (PC-IRV)	114
Automatic Tube Compensation (ATC)	115
Neurally Adjusted Ventilatory Assist (NAVA)	115
High-Frequency Oscillatory Ventilation (HFOV)	115
Summary	116
Self-Assessment Questions	116
Answers to Self-Assessment Questions	119
References	119
Additional Resources	123

CHAPTER 5: SPECIAL AIRWAYS FOR VENTILATION

Introduction	126
Oropharyngeal Airway	126
Types of Oropharyngeal Airways	126
Selection of Oropharyngeal Airway	127
Insertion of Oropharyngeal Airway	128
Nasopharyngeal Airway	128
Selection of Nasopharyngeal Airway	129
Insertion of Nasopharyngeal Airway	129
Complications of Nasopharyngeal Airway	130
Esophageal Obturator Airway (EOA)	130
Insertion of EOA	131
Esophageal Gastric Tube Airway (EGTA)	132
Laryngeal Mask Airway (LMA)	133
Use of LMA	133
Contraindications for LMA	134
Selection of LMA	135
Insertion of LMA	135
Removal of LMA	136
Limitations of LMA	138

Copyright 2013 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s). Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

Esophageal-Tracheal Combitube (ETC)	139
Insertion and Use of ETC	139
Complications of ETC	140
Double-Lumen Endobronchial Tube (DLT)	140
Indications	141
Selection of DLT	142
Insertion of DLT	142
Complications of DLT	143
Summary	144
Self-Assessment Questions	144
Answers to Self-Assessment Questions	146
References	146
Additional Resources	149

CHAPTER 6: AIRWAY MANAGEMENT IN MECHANICAL VENTILATION

Introduction	151
Intubation	152
Indications	153
Common Artificial Airways in Mechanical Ventilation	154
Endotracheal Tube	154
Tracheostomy Tube	155
Specialty Tracheostomy Devices	155
Intubation Procedure	156
Preintubation Assessment and Signs of Difficult Airway	156
Supplies	157
Special Visualization Devices	161
Selection of Endotracheal Tube	162
Ventilation and Oxygenation	162
Oral Intubation	163
Nasal Intubation	163
Common Errors	163
Signs of Endotracheal Intubation	165
Signs of Esophageal Intubation	167
Rapid Sequence Intubation	168
Indications and Contraindications	168
Practice Guidelines	168
Management of Endotracheal and Tracheostomy Tubes	171
Securing Endotracheal and Tracheostomy Tubes	171
Cuff Pressure	171
Minimal Occlusion Volume and Minimal Leak Technique	172
Endotracheal Suctioning	173
Endotracheal Tube Changer	175
Speaking Valves	177
Contraindications	177
Safety Requirements	177

Contents XIII

Positive Pressure Ventilation	178
Extubation	179
Predictors of Successful Extubation	179
Procedure	179
Unplanned Extubation	181
Complications of EndotracheaL Airway	182
During Intubation	183
While Intubated	183
Immediately after Extubation	183
Following Extubation	184
Summary	184
Self-Assessment Questions	184
Answers to Self-Assessment Questions	187
References	188
Additional Resources	191

CHAPTER 7: NONINVASIVE POSITIVE PRESSURE VENTILATION

Introduction	193
Terminology	194
Physiologic Effects of NPPV	194
Use of Continuous Positive Airway Pressure (CPAP)	195
Obstructive Sleep Apnea	196
Use of Bilevel Positive Airway Pressure (Bilevel PAP)	197
Common Interfaces for CPAP and Bilevel PAP	198
Nasal Mask	198
Oronasal Mask	200
Nasal Pillows	200
Full-Face Mask	202
Potential Problems with Interfaces	203
Titration of Continuous Positive Airway Pressure	203
Autotitration	203
Ramp	204
C-Flex™	204
Titration of Bilevel Positive Airway Pressures	204
Bi-Flex™	205
Summary	206
Self-Assessment Questions	206
Answers to Self-Assessment Questions	208
References	208
Additional Resources	211

CHAPTER 8: INITIATION OF MECHANICAL VENTILATION

Introduction	213
Goals of Mechanical Ventilation	213

Copyright 2013 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s). Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

Indications	214
Acute Ventilatory Failure	214
Impending Ventilatory Failure	215
Severe Hypoxemia	217
Prophylactic Ventilatory Support	218
Contraindications	218
Initial Ventilator Settings	220
Mode	220
Dual Control Mode	220
Frequency	221
Tidal Volume	222
Pressure Support	223
F_1O_2	224
PEEP	225
I:E Ratio	225
Flow Pattern	227
Ventilator Alarm Settings	229
Low Exhaled Volume Alarm	229
Low Inspiratory Pressure Alarm	229
High Inspiratory Pressure Alarm	229
Apnea Alarm	230
High Frequency Alarm	230
High and Low F _I O ₂ Alarms	230
Hazards And Complications	230
Types of Hazards and Complications	231
Malfunction and Misuse of Alarms	232
Barotrauma	232
Decrease in Cardiac Output and Blood Pressure	232
Summary	234
Self-Assessment Questions	235
Answers to Self-Assessment Questions	238
References	238
Additional Resources	240

CHAPTER 9: MONITORING IN MECHANICAL VENTILATION

Introduction	242
Vital Signs	243
Heart Rate	243
Blood Pressure	243
Respiratory Frequency	244
Temperature	245
Chest Inspection	246
Chest Movement	246
Auscultation	248
Imaging	251

Contents	XV
----------	----

Fluid Balance and Anion Gap	253
Fluid Balance	253
Anion Gap	253
Arterial Blood Gases	254
Assessment of Ventilatory Status	255
Assessment of Oxygenation Status	255
Limitations of Blood Gases	257
Oxygen Saturation Monitoring	258
Pulse Oximetry	258
Accuracy and Clinical Use of Pulse Oximetry	259
Limitations of Pulse Oximetry	259
Integrated Pulse CO-Oximetry	259
End-Tidal Carbon Dioxide Monitoring	260
Capnography	261
Capnography Waveforms and Clinical Application	261
P(a-et)CO ₂ Gradient	264
Limitations of Capnography Monitoring	264
Transcutaneous Blood Gas Monitoring	265
Transcutaneous PO_2 (Ptc O_2)	265
Transcutaneous PCO_2 (PtcCO ₂)	266
Cerebral Perfusion Pressure	266
Summary	267
Self-Assessment Questions	267
Answers to Self-Assessment Questions	270
References	270

CHAPTER 10: HEMODYNAMIC MONITORING

	07/
Introduction	276
Invasive Hemodynamic Monitoring	276
Technical Background	276
Units of Measurement	277
Types of Catheters	277
Arterial Catheter	277
Insertion of Arterial Catheter	278
Normal Arterial Pressure and Mean Arterial Pressure	279
Pulse Pressure	279
Potential Problems with Arterial Catheter	281
Central Venous Catheter	281
Insertion of Central Venous Catheter	282
Components of Central Venous Pressure Waveform	283
CVP Measurements	284
Pulmonary Artery Catheter	284
Insertion of Pulmonary Artery Catheter	285
Components of Pulmonary Arterial Pressure Waveform	286
PAP Measurements	286

Pulmonary Capillary Wedge Pressure	289
Components of Pulmonary Capillary Wedge Pressure Waveform	289
PCWP Measurements	290
Verification of the Wedged Position	291
Cardiac Output and Cardiac Index	291
Summary of Preloads and Afterloads	292
Calculated Hemodynamic Values	292
Stroke Volume and Stroke Volume Index	293
Oxygen Consumption and Oxygen Consumption Index	293
Pulmonary Vascular Resistance	293
Systemic Vascular Resistance	293
Mixed Venous Oxygen Saturation	294
Decrease in Mixed Venous Oxygen Saturation	294
Increase in Mixed Venous Oxygen Saturation	294
Less-Invasive Hemodynamic Monitoring	295
Pulse Contour Analysis	295
Noninvasive Hemodynamic Monitoring	296
Transesophageal Echocardiography	296
Carbon Dioxide Elimination (VCO ₂)	297
Impedance Cardiography	297
Theory of Operation	298
Thermodilution Method and ICG	298
Accuracy of ICG	300
Clinical Application	300
Summary	301
Self-Assessment Questions	301
Answers to Self-Assessment Questions	303
References	304

CHAPTER 11: VENTILATOR WAVEFORM ANALYSIS

Introduction	309
Flow Waveforms During Positive Pressure Ventilation	311
Effects of Constant Flow During Volume-Controlled Ventilation	312
Flow-Time Waveform	313
Pressure-Time Waveform	314
Controlled Mandatory Ventilation	317
Assist Mandatory Volume-Controlled Ventilation	318
Mathematical Analysis of Constant-Flow Ventilation	320
Spontaneous Ventilation During Mechanical Ventilation	323
Synchronized Intermittent Mandatory Ventilation	323
Continuous Positive Airway Pressure	325
Effects of Flow, Circuit, and Lung Characteristics on	
Pressure-Time Waveforms	326
Flow and Transairway Pressure	326
Compliance and Alveolar Pressure	327

Effects of Descending Ramp Flow Waveform during	
Volume-Controlled Ventilation	328
Time- and Flow-Limited Ventilation	328
Peak Flow and Tidal Volume Relationship in Time-Limited	Ventilation 333
Effects of End-Flow on End-Transairway Pressure	334
Distribution of Delivered Tidal Volume	334
CMV during Descending Ramp Flow Ventilation	336
Waveforms Developed during Pressure-Controlled Ven	tilation 337
Pressure-Controlled Ventilation (PCV)	337
Assist Breaths during Pressure-Controlled Ventilation	338
Inverse Ratio Pressure-Controlled Ventilation (IRPCV)	
Pressure Support and Spontaneous Ventilation	340
Pressure Support Ventilation (PSV)	340
Adjusting Rise Time during PSV	341
SIMV (CFW) and PSV	342
SIMV (DRFW) and PSV	343
Effects of Lung Characteristics on Pressure-Controlled	
Ventilation Waveforms	343
Using Waveforms for Patient-Ventilator System Assessn	nent 345
Patient-Ventilator Dyssynchrony	345
Dyssynchrony during Constant Flow Ventilation	347
Dyssynchrony during Descending Ramp Flow Ventil	ation 349
Changes in Pressure Waveforms during Respiratory	/
Mechanics Measurement	350
Dyssynchrony during Pressure-Controlled Ventilatior	
Using Expiratory Flow and Pressure Waveforms as Dic	•
Increased Airway Resistance	352
Loss of Elastic Recoil	354
Decreased Lung-Thorax Compliance (C _{LT})	355
Gas Trapping and Uncounted Breathing Efforts	356
Troubleshooting Ventilator Function	357
Lack of Ventilator Response	357
Circuit Leaks	358
Pressure-Volume Loop (PVL) and Flow-Volume Loop (FV	-
Pressure-Volume Loop (PVL)	359
Effects of Lung-Thorax Compliance on PVL	360
Effect of Airflow Resistance on PVL	361
Lower Inflection Point on PVL and Titration of PEEP	361
Upper Inflection Point on PVL and Adjustment of V_T	363
Effects of Airway Status on Flow-Volume Loop (FVL)	363
Summary	364
Self-Assessment Questions	365
Answers to Self-Assessment Questions	370
References	370
Additional Resources	371

CHAPTER 12: MANAGEMENT OF MECHANICAL VENTILATION

	075
	375
Basic Management Strategies	375
Strategies to Improve Ventilation	376
Increase Ventilator Frequency	376
Increase Spontaneous Tidal Volume or Frequency	377
Increase Ventilator Tidal Volume	378
Other Strategies to Improve Ventilation	378
Permissive Hypercapnia	378
Strategies to Improve Oxygenation	380
Increase Inspired Oxygen Fraction (F ₁ O ₂)	380
Improve Ventilation and Reduce Mechanical Deadspace	381
Improve Circulation	382
Maintain Normal Hemoglobin Level	382
Initiate Continuous Positive Airway Pressure (CPAP)	383
Initiate Positive End-Expiratory Pressure (PEEP)	383
Initiate Inverse Ratio Ventilation (IRV)	384
Initiate Extracorporeal Membrane Oxygenation (ECMO)	384
Initiate High Frequency Oscillatory Ventilation (HFOV) for Adults	385
Arterial Blood Gases	386
Respiratory Acidosis and Compensated Metabolic Alkalosis	387
Respiratory Alkalosis and Compensated Metabolic Acidosis	387
Alveolar Hyperventilation Due to Hypoxia, Improper	007
Ventilator Settings, or Metabolic Acidosis	388
Alveolar Hyperventilation in Patients with COPD	388
Alveolar Hypervennation in Fatients with COFD Alveolar Hypoventilation Due to Sedation or Patient Fatigue	389
Metabolic Acid-Base Abnormalities	389
Troubleshooting of Common Ventilator Alarms and Events	389
Low Pressure Alarm	389
Low Expired Volume Alarm	390
High Pressure Alarm	391
High Frequency Alarm	391
Apnea/Low Frequency Alarm	392
High PEEP Alarm	392
Low PEEP Alarm	392
Auto-PEEP	393
Care of the Ventilator Circuit	394
Circuit Compliance	395
Circuit Patency	395
Humidity and Temperature	396
Frequency of Circuit Change	397
Care of the Artificial Airway	397
Patency of the Endotracheal Tube	397
Humidification and Removal of Secretions	398

Ventilator-Associated Pneumonia	399
Fluid Balance	400
Distribution of Body Water	400
Clinical Signs of Extracellular Fluid Deficit or Excess	401
Treatment of Extracellular Fluid Abnormalities	402
Electrolyte Balance	402
Normal Electrolyte Balance	402
Sodium Abnormalities	403
Potassium Abnormalities	404
Nutrition	405
Undernutrition	405
Overfeeding	406
Low-Carbohydrate High-Fat Diet	406
Total Caloric Requirements	407
Phosphate Supplement	407
Adjunctive Management Strategies	408
Low Tidal Volume	408
Prone Positioning	409
Tracheal Gas Insufflation	410
Summary	411
Self-Assessment Questions	412
Answers to Self-Assessment Questions	415
References	415
Additional Resources	419

CHAPTER 13: PHARMACOTHERAPY FOR MECHANICAL VENTILATION

Introduction	421
Drugs for Improving Ventilation	422
Autonomic Nervous System Agents	422
Adrenergic Bronchodilators (Sympathomimetics)	423
Anticholinergic Bronchodilators (Parasympatholytics)	426
Xanthine Bronchodilators	427
Anti-Inflammatory Agents (Corticosteroids)	429
Delivery of MDI Medications	430
Neuromuscular Blocking Agents	431
Mechanism of Action	432
Characteristics of Neuromuscular Blocking Agents	433
Factors Affecting Neuromuscular Blockade	433
Adverse Effects	436
Evaluation of Neuromuscular Blockade	437
Central Nervous System Agents	439
Sedatives and Antianxiety Agents (Benzodiazepines)	440
Opioid Analgesics	442
Agents for Seizures and Elevated Intracranial Pressure (Barbiturates)	447

Copyright 2013 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s). Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

Other Agents Used in Mechanical Ventilation	448
Propofol	449
Haloperidol	449
Dexmedetomidine	451
Nitric Oxide	452
Summary	454
Self-Assessment Questions	454
Answers to Self-Assessment Questions	456
References	457
Additional Resources	460

CHAPTER 14: PROCEDURES RELATED TO MECHANICAL VENTILATION

Introduction	462
Chest Tube and Drainage System	462
Indications for Chest Tube	463
Chest Tube Selection and Placement	463
Methods of Placement	465
Chest Tube Drainage System	466
Care and Removal of Chest Tube	469
Transport with Chest Tube	469
Assisting in Fiberoptic Bronchoscopy	470
Indications for Fiberoptic Bronchoscopy	470
Bronchoscope and Medications	472
Insertion of Bronchoscope	473
Types of Specimen	475
Complications	476
Postbronchoscopy Care	477
Transport of Mechanically Ventilated Patients	477
Indications	478
Contraindications	478
Equipment and Supplies	478
Types of Transport	478
Procedures for Interhospital Transport	480
Hazards and Complications	481
Magnetic Resonance Imaging	481
Summary	482
Self-Assessment Questions	483
Answers to Self-Assessment Questions	484
References	485
Additional Resources	488

CHAPTER 15: CRITICAL CARE ISSUES IN MECHANICAL VENTILATION

Introduction	490
Acute Lung Injury and Acute Respiratory Distress Syndrome	490

Copyright 2013 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s). Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

Definitions of ALI and ARDS	491
Pathophysiology	492
Clinical Presentations	493
Lung Protection Using Airway Pressure Thresholds	494
Low Tidal Volume and Permissive Hypercapnia	494
Decremental Recruitment Maneuver to Determine Optimal PEEP	495
Prone Positioning	496
Ventilator-Associated Pneumonia (VAP)	497
Incidence of VAP	497
Clinical Presentations	498
Prevention of VAP	499
Treatment of VAP	501
Hypoxic-Ischemic Encephalopathy (HIE)	501
General Principles of HIE	502
Cerebral Perfusion Pressure	503
Decrease in CPP Due to Cardiac Arrest	503
Decrease in CPP Due to Shock	504
Decrease in CPP Due to Brain Injury	504
Evaluation and Treatment of HIE	504
Trauma Brain Injury	505
Delayed Brain Injury	505
Acceleration and Deceleration Brain Injuries	506
Clinical Evaluation and Assessment	506
Management Strategies	507
Respiratory Management	508
Summary	509
Self-Assessment Questions	509
Answers to Self-Assessment Questions	511
References	511

CHAPTER 16: WEANING FROM MECHANICAL VENTILATION

Introduction	517
Definition of Weaning Success and Failure	517
Weaning Success	518
Weaning in Progress	518
Weaning Failure	518
Patient Condition Prior to Weaning	519
Weaning Criteria	520
Ventilatory Criteria	520
Oxygenation Criteria	522
Pulmonary Reserve	524
Pulmonary Measurements	524
Rapid Shallow Breathing Index (RSBI)	526
Weaning Procedure	527
Spontaneous Breathing Trial	527

Failure of SBT	527
Pressure Support Ventilation	527
Other Modes of Partial Ventilatory Support	529
Weaning Protocol	530
Signs of Weaning Failure	531
Causes of Weaning Failure	533
Increase of Airflow Resistance	533
Decrease of Compliance	533
Respiratory Muscle Fatigue	533
Terminal Weaning	534
Prior to Withdrawal	535
Withdrawal	536
Summary	536
Self-Assessment Questions	536
Answers to Self-Assessment Questions	539
References	539
Additional Resources	542

CHAPTER 17: NEONATAL MECHANICAL VENTILATION

Introduction	545
Intubation	546
Indications	546
Equipment	547
Surfactant Replacement Therapy	548
History	548
Indications	549
Types of Surfactant and Dosages	549
Outcomes	551
Nasal CPAP	552
Use of Nasal CPAP	552
Basic Principles of Neonatal Ventilation	553
Pressure-Controlled Ventilation	553
Volume-Controlled Ventilation	553
Ventilator Circuits and Humidifiers	553
Initiation of Neonatal Ventilatory Support	555
Indications for Mechanical Ventilation	555
Initial Ventilator Settings	556
High Frequency Ventilation (HFV)	558
High Frequency Positive Pressure Ventilation (HFPPV)	559
High Frequency Jet Ventilation (HFJV)	560
High Frequency Oscillatory Ventilation (HFOV)	561
Initial HFOV Settings	564
Other Methods of Ventilation	566
Machine Volume	567

XXIII

Volume Guarantee	567
Liquid Ventilation	567
Extracorporeal Membrane Oxygenation (ECMO)	568
History	568
Patient Selection	568
ECMO Criteria	569
Mechanisms of Bypass	570
Complications	570
Summary	572
Self-Assessment Questions	572
Answers to Self-Assessment Questions	576
References	576
Additional Resources	579

CHAPTER 18: MECHANICAL VENTILATION IN NONTRADITIONAL SETTINGS

Introduction	581
Mechanical Ventilation at Home	582
Goals of Home Mechanical Ventilation (HMV)	582
Indications and Contraindications	583
Patient Selection	586
Equipment Selection	587
Mechanical Ventilation in Mass Casualty Incidents	589
Causes of Mass Casualty	589
Mass Casualty and Mechanical Ventilation	590
Triage Systems for Mass Casualty Incidents	591
Strategic National Stockpile	594
Exclusion Criteria for Mechanical Ventilation	595
Personnel and Planning	596
Mechanical Ventilation in Hyperbaric Condition	596
Rationale for Hyperbaric Oxygenation (HBO)	596
Indications for HBO	597
Endotracheal Tube and Ventilator	597
Tidal Volume Fluctuations	598
Monitoring and Mechanical Ventilation	599
Defibrillation and Cardiac Pacing	599
Mechanical Ventilation in Hypobaric Condition	601
High-Altitude Cerebral and Pulmonary Edema	602
Airplane Cabin Pressure	602
Ventilator Parameter Changes under Hypobaric	
Conditions	603
Pressure Compensation	604
Traveling with Portable Ventilators	604
Characteristics of Portable Ventilators	605
Traveling in the United States	605

Adjustment of Tidal Volume	606
Portable Oxygen Concentrator	607
Summary	608
Self-Assessment Questions	608
Answers to Self-Assessment Questions	610
References	610
Additional Resources	614

CHAPTER 19: CASE STUDIES

Case 1:	COPD	616
Case 2:	Status Asthmaticus	620
Case 3:	Post-Abdominal Surgery	625
Case 4:	Head Injury	628
Case 5:	Smoke Inhalation	631
Case 6:	Drug Overdose	635
Case 7:	Tension Hemopneumothorax	639
Case 8:	Chest Trauma	644
Case 9:	Acute Respiratory Distress Syndrome	649
Case 10:	Myasthenia Gravis	656
Case 11:	Guillain-Barré	660
Case 12:	Botulism	667
Case 13:	Meconium Aspiration/Patent Ductus Arteriosus	672
Case 14:	Persistent Pulmonary Hypertension of the Newborn	676
Case 15:	Home Care and Disease Management	678
Case 16:	End-of-Life Sedation on Mechanical Ventilation	685

Appendix 1:	Respiratory Care Calculations	689
	A. Arterial Oxygen Tension to Inspired Oxygen Concentration	
	(PaO ₂ /F ₁ O ₂) Index	689
	B. Cardiac Output (CO): Fick's Estimated Method	689
	C. Cerebral Perfusion Pressure	690
	D. Compliance: Dynamic (C _{DYN})	691
	E. Compliance: Static (C _{ST})	691
	F. Corrected Tidal Volume (V _T)	692
	G. Deadspace to Tidal Volume Ratio (V_D/V_T)	692
	H. I:E Ratio	693
	I. Mean Airway Pressure (mPaw)	694
	J. Minute Ventilation: Expired and Alveolar	695
	K. Oxygen Content: Arterial (CaO ₂)	695
	L. Oxygen Index (OI)	696
	M. Shunt Equation (Q_{SP}/Q_T) : Classic Physiologic	696
	N. Shunt Equation (Q_{SP}/Q_T) : Estimated	697
	O. Vascular Resistance: Pulmonary	698

	P. Vascular Resistance: Systemic Q. Ventilator Rate Needed for a Desired PaCO ₂ R. Weaning Index: Rapid Shallow Breathing	699 699 700
Appendix 2:	Normal Electrolyte Concentrations in Plasma	701
Appendix 3:	Oxygen Transport Normal Ranges	702
Appendix 4:	Hemodynamic Normal Ranges	703
Appendix 5:	Glasgow Coma Score	705
Appendix 6:	Apache II Severity of Disease Classification System	706
	Glossary	708
	Index	719

Preface

Mechanical ventilation has been an integral part of critical care medicine. In its earlier years, ventilators were mainly used in the intensive care units and occasionally in the emergency departments for patient stabilization and intrahospital transport. In recent years, ventilators are used frequently in interhospital and intercontinental transport of critically ill patients. They are also used in mass casualty events, in both hyperbaric and hypobaric environments. Technology has evolved to a point where patients can manage the basic functions of their ventilators at home and even on a commercial aircraft.

Due to the inherited limitations of printed media, it would be impossible to provide adequate coverage on all topics, theories, procedures, and equipment related to mechanical ventilation. As a tradeoff, the primary focus of this mechanical ventilation textbook is to provide a basic but thorough presentation of those relevant topics that are pertinent to everyday clinical practice. Users of information technology and the Internet would agree that "more is not better." This book attempts to strike a balance between an adequate coverage in theory and a spectrum of needed clinical knowledge. The learners should find this book useful to develop a solid foundation in the theories of mechanical ventilation. With additional clinical experience, the learners should be able to integrate and apply the theories of mechanical ventilation in a clinical setting for better patient care.

In the fourth edition of *Clinical Application of Mechanical Ventilation*, new information and numerous references have been added. In some cases, older references are retained because their unique contribution has not been duplicated or cannot be found elsewhere. These classic references also allow learners and researchers to follow the path of progression in the knowledge and techniques of mechanical ventilation.

Overview of Textbook

In this fourth edition, the key terms are boldfaced within the text and the definitions are placed in the margin for quick reference. Essential information is also highlighted in the margin for quick reference. Learning objectives can be found in the beginning of Chapters 1 through 18.

Chapter 1 of the fourth edition reviews the normal pulmonary mechanics and the abnormal physiologic conditions leading to ventilatory failure. Chapter 2 provides a review of the effects of positive pressure ventilation on the major body

Copyright 2013 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s). Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

systems and organs. Chapter 3 covers the components, terminology, and classification of mechanical ventilators. Chapter 4 describes up-to-date operating modes of mechanical ventilation. Chapter 5 reviews some special airways that are used to facilitate ventilation and oxygenation. Chapter 6 covers the application, management, and complications of endotracheal and tracheostomy tubes. Chapter 7 presents the clinical application of noninvasive positive pressure ventilation and the associated interfaces. Chapter 8 offers the common procedures for the initiation of mechanical ventilation. The indications, contraindications, initial ventilator settings, and alarm settings relating to mechanical ventilation are also discussed. Chapter 9 outlines the essential methods of patient monitoring to include imaging, fluid balance, blood gases, pulse oximetry, capnography, transcutaneous blood gases, and cerebral perfusion pressure. Chapter 10 covers the basics of invasive, less invasive and noninvasive hemodynamic monitoring. Chapter 11 gives a detailed discussion on ventilator waveform analysis and its applications. Chapter 12 presents the strategies to improve ventilation and oxygenation during mechanical ventilation. It also describes the basic strategies to manage ventilator alarms and abnormal physiologic conditions during mechanical ventilation. Chapter 13 reviews the basic pharmacotherapy for mechanical ventilation. The drugs discussed in this chapter include bronchodilators, neuromuscular blockers, central nervous agents, and other agents to facilitate patient comfort and patient-ventilator synchrony. Chapter 14 includes special procedures associated with mechanical ventilation-chest tube and drainage system, fiberoptic bronchoscopy, and transport of mechanically ventilated patients. Chapter 15 reviews some critical care issues in mechanical ventilation-acute lung injury, acute respiratory distress syndrome, ventilatorassociated pneumonia, hypoxic-ischemic encephalopathy, and traumatic brain injury. Chapter 16 includes the criteria, procedure, and protocol for weaning from mechanical ventilation. Weaning failure and terminal weaning are also discussed. Chapter 17 covers a wide spectrum of neonatal mechanical ventilation to include high-frequency oscillatory ventilation and extracorporeal membrane oxygenation. In Chapter 18, mechanical ventilation in nontraditional settings is discussed. These settings include the use of a ventilator at home, in a mass casualty situation, in hyperbaric and hypobaric environments, as well as traveling with a mechanical ventilator on commercial aircraft. Chapter 19 has sixteen case studies related to mechanical ventilation.

New to This Edition

The fourth edition of *Clinical Application of Mechanical Ventilation* has two new chapters. Chapter 15 covers five critical care issues in mechanical ventilation that are commonly encountered by critical care providers. They are acute lung injury, acute respiratory distress syndrome, ventilator-associated pneumonia, hypoxic-ischemic encephalopathy, and traumatic brain injury. A recruitment maneuver to determine optimal PEEP is also included in Chapter 15. In Chapter 18, mechanical ventilation in nontraditional settings is discussed. These settings include the use of a ventilator at home, in a mass casualty situation, in hyperbaric and hypobaric

environments, and on commercial aircraft. This new edition also provides much updated information. For example, modes of ventilation are updated in Chapter 4 to reflect current practice. Special visualization devices for intubation are added in Chapter 6. Less invasive and noninvasive hemodynamic monitoring techniques are added in Chapter 10. Weaning in progress and weaning protocols are updated in Chapter 16. In Chapter 19, a new case study covers the medical and ethical aspects of terminal weaning. The Appendices are updated to provide more useful reference information for the use and management of mechanical ventilation.

Ancillary Package

The complete supplement package for *Clinical Application of Mechanical Ventilation*, *fourth edition* was developed to achieve two goals:

- 1. To assist students in the learning and applying the information presented in the test.
- To assist instructors in planning and implementing their courses in the most efficient manner and provide exceptional resources to enhance their students' experience.

Instructor Companion Website

ISBN 13: 978-1-111-53968-9

Spend less time planning and more time teaching with Delmar Cengage Learning's Instructor Resources to Accompany *Clinical Application of Mechanical Ventilation, fourth edition.* The Instructor Companion Website can be accessed by going to www.cengage.com/login to create a unique user log-in. The password-protected Instructor Resources include the following:

Instructor's Manual

An electronic instructor's manual provides instructors with invaluable tools for preparing for class lectures and examinations. The instructor's manual consists of three sections. The first section is a collection of potential test bank questions for each chapter, followed the second section that houses the answers for quick and easy assessment. The third section of the instructor's manual provides the answers to the workbook questions and exercises.

Computerized Test Bank in ExamView™

An electronic testbank makes and generates tests and quizzes in an instant. With a variety of question types, including short answer, multiple choice, true or false, and matching exercises, creating challenging exams will be no barrier in your classroom. This testbank includes a rich bank of questions that test students on retention and application of what they've learned in the course. Answers are provided for all questions so instructors can focus on teaching, not grading.

Student Workbook

ISBN 13: 978-1-111-53967-2

The Student Workbook to accompany the fourth edition of Clinical Application of Mechanical Ventilation is a powerful learning aid for students and will enhance their comprehension and ability to apply what they have learned. Each workbook chapter follows the core textbook and supplies students with a variety of challenging exercises and quizzes to complete. This Workbook is a great asset to students and instructors alike to support active participation and engage the learning process.

Features of the Fourth Edition

The fourth edition includes many tried and true features that will enhance the learning experience and make this textbook a valuable asset in your education.

The addition of **Learning Objectives** listed at the beginning of each chapter outlines expected outcomes and is a great assessment tool after you've read the chapter. Another new feature is **Additional Resources**, which lists several assets in various media types that you can use to further your understanding of the chapter topics. Other features that offer guided study are a **Key Terms** list for each chapter and corresponding margin definitions for quick and easy reference. **Margin Notes** can be found throughout the chapters and succinctly present critical information for each chapter. Chapter **tables** and **figures** are improved with a brand new design and a second color to add prominence and draw attention to the information contained therein. Rounding out the important features of the fourth edition are the **Self-Assessment Questions** found at the end of each chapter that challenge you to apply the knowledge you've acquired throughout the chapter. **Answers** to the questions are included in each chapter for quick assessment to identify areas of weakness, and where further study is needed.

As in the past three editions, the goal of the fourth edition of *Clinical Application* of *Mechanical Ventilation* is to provide the students a textbook they will enjoy reading and using at school and at home. It is also my goal to make this textbook a quick reference source for respiratory care practitioners and other critical care providers.

-David W. Chang

Acknowledgments

I thank my colleagues Hanns Billmayer, Frank Dennison, Paul Eberle, Janelle Gardiner, Luis Gonzalez III, Gary Hamelin, Michell Oki, Frank Rando, Lisa Trujillo, Jonathan Waugh, and Gary White for writing or revising chapters and case studies in the fourth edition of *Clinical Application of Mechanical Ventilation*. My special appreciation goes to Dr. David Hassell for the chest radiographs showing thoracic vascular lines. Their knowledge and experience in different aspects of critical care have made this edition clinically relevant and practical. I also thank other colleagues for their help in many different capacities for the last three editions. Their contribution to the process of teaching and learning is evident throughout the pages of this book.

I would also like to recognize my colleagues who reviewed the contents of this edition for completeness and accuracy. Their help is very much appreciated throughout the development of this manuscript. They provided corrections, suggestions, and useful comments. The fourth edition of *Clinical Application of Mechanical Ventilation* should continue to be a useful textbook for students and a helpful reference source for critical care providers. The reviewers are:

Eileen G Durant, MEd, RRT, MS

Assistant Professor/Director of Clinical Education Tallahassee Community College Tallahassee, Florida

Doug Gibson, RRT, RCP

Program Director Respiratory Care Technology Program, McLennan Community College Waco, Texas

Todd Klopfenstein, MS, RRT

Program Director Alegent Health/Midland University, School of Respiratory Therapy Omaha, Nebraska

Daniel Knue, MM, RRT-NPS Director Allied Health and Respiratory Care Muskegon Community College Muskegon, Michigan

Elgloria A. Harrison MS, RRT, NPS, AE-C

Associate Professor, Chair, Department of Nursing, the Health Professions, and the Institute of Gerontology University of the District of Columbia Washington, D.C.

Copyright 2013 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s). Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it

Publishing a textbook and its accompanying workbook and instructor's manual is a team effort. I thank my team of professionals and individuals for making this task a rewarding experience. My team members are: Associate Acquisition Editor Christina Gifford, Associate Product Manager Meghan Orvis, and Senior Content Project Manager Kara A. DiCaterino.

Contributors to the Fourth Edition

Frank Dennison, MEd, RRT, RPFT

Formerly of Medical College of Georgia Augusta, Georgia

Paul G. Eberle, PhD, RRT Weber State University Ogden, Utah

Janelle Gardiner, MS, RRT, AE-C Weber State University Ogden, Utah

Luis S. Gonzalez III, PharmD, BCPS Memorial Medical Center Johnstown, Pennsylvania

Gary Hamelin, MS, RRT South Maine Community College South Portland, Maine

Michell Oki, MPAcc, RRT Weber State University Ogden, Utah Frank Rando, PA, RCP, CRT, EMT-P

Health Systems Preparedness & Homeland Security Advisor Tucson, Arizona

Lisa Trujillo, MS, RRT Weber State University Ogden, Utah

Jonathan B. Waugh, PhD, RRT, RPFT

University of Alabama at Birmingham Birmingham, Alabama

Gary White, MEd, RRT, CPFT Spokane Community College Spokane, Washington

Copyright 2013 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s). Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

Chapter

Principles of Mechanical Ventilation

David W. Chang

Outline

Introduction Airway Resistance

Factors Affecting Airway Resistance Airway Resistance and the Work of Breathing (ΔP) Effects on Ventilation and Oxygenation Airflow Resistance Lung Compliance

Compliance Measurement Static and Dynamic Compliance Compliance and the Work of Breathing Effects on Ventilation and Oxygenation **Deadspace Ventilation** Anatomic Deadspace Alveolar Deadspace

Physiologic Deadspace

Ventilatory Failure

Hypoventilation Ventilation/Perfusion (V/Q) Mismatch Intrapulmonary Shunting Diffusion Defect Oxygenation Failure Hypoxemia and Hypoxia Clinical Conditions Leading to Mechanical Ventilation Depressed Respiratory Drive Excessive Ventilatory Workload Failure of Ventilatory Pump Summary Self-Assessment Questions Answers to Self-Assessment Questions

Answers to Selt-Assessment Question References Additional Resources

Key Terms

airway resistance alveolar deadspace alveolar volume anatomic deadspace deadspace ventilation diffusion defect hypoventilation hypoxic hypoxia intrapulmonary shunting lung compliance oxygenation failure peak inspiratory pressure physiologic deadspace plateau pressure refractory hypoxemia ventilatory failure V/Q mismatch

Learning Objectives

After studying this chapter and completing the review questions, the learner should be able to:

- Use required variables and calculate airway resistance, compliance, and deadspace ventilation.
- Describe the relationship among the three variables in airway resistance, compliance, and deadspace ventilation.
- Describe the clinical application of static and dynamic compliance.
- Explain the changes in airway resistance, lung compliance, and deadspace ventilation that contribute to the increased work of breathing and ventilatory failure.
- Describe the process of four clinical conditions that lead to ventilatory failure.
- Identify the presence of hypoxemia and signs of hypoxia.
- Describe three primary clinical conditions that lead to mechanical ventilation.

INTRODUCTION

Mechanical ventilation is a useful modality for patients who are unable to sustain the level of ventilation necessary to maintain the gas exchange functions (oxygenation and carbon dioxide elimination). Indications for mechanical ventilation vary greatly among patients. Mechanical ventilation may be indicated in conditions due to physiologic changes (e.g., deterioration of lung parenchyma), disease states (e.g., respiratory distress syndrome), medical/surgical procedures (e.g., postanesthesia recovery), and many other causes (e.g., head trauma, drug overdose) leading to ventilatory failure or oxygenation failure.

Use of mechanical ventilation also varies greatly from short term to long term and from acute care in the hospital to extended care at home. One of the most frequent uses of mechanical ventilation is for the management of postoperative patients recovering from anesthesia and medications. Other indications for mechanical ventilation in adults include apnea and impending respiratory arrest, acute exacerbation of COPD, acute severe asthma, neuromuscular disease, acute hypoxemic respiratory failure, heart failure and cardiogenic shock, acute brain injury, and flail chest (Pierson, 2002).

Regardless of the diagnosis or disease state, patients who require mechanical ventilation generally have developed ventilatory failure, oxygenation failure, or both. Specifically, when a patient fails to ventilate or oxygenate adequately, the problem may be caused by one of six major pathophysiological factors: (1) increased airway resistance, (2) changes in lung compliance, (3) hypoventilation, (4) V/Q mismatch, (5) intrapulmonary shunting, or (6) diffusion defect.

AIRWAY RESISTANCE

airway resistance: The degree of airflow obstruction in the airways.

Airway resistance is defined as airflow obstruction in the airways. In mechanical ventilation, the degree of airway resistance is primarily affected by the length, size, and patency of the airway, endotracheal tube, and ventilator circuit.

Factors Affecting Airway Resistance

Airway resistance causes obstruction of airflow in the airways. It is increased when the patency or diameter of the airways is reduced. Obstruction of airflow may be caused by: (1) changes inside the airway (e.g., retained secretions), (2) changes in the wall of the airway (e.g., neoplasm of the bronchial muscle structure), or (3) changes outside the airway (e.g., tumors surrounding and compressing the airway) (West, 2007). When one of these conditions occurs, the radius of the airway decreases and airway resistance increases. According to the simplified form of Poiseuille's Law, the driving pressure (ΔP) to maintain the same airflow (\dot{V}) must increase by a factor of 16-fold when the radius (r) of the airway is reduced by only half of its original size.

Simplified form of Poiseuille's Law:
$$\Delta P = \frac{\dot{V}}{r^4}$$

One of the most common causes of increased airway resistance is chronic obstructive pulmonary disease (COPD). This type of lung disease includes emphysema, chronic bronchitis, chronic asthma, and bronchiectasis. Mechanical conditions that may increase airway resistance include postintubation obstruction and foreign body aspiration. Infectious processes include laryngotracheobronchitis (croup), epiglottitis, and bronchiolitis. Table 1-1 lists three categories of clinical conditions that increase airway resistance.

Normal airway resistance in healthy adults is between 0.5 and 2.5 cm H₂O/L/sec (Wilkins, 2009). It is higher in intubated patients due to the smaller diameter of the endotracheal (ET) tube. Airway resistance varies directly with the length and inversely with the diameter of the airway or ET tube. In the clinical setting, the ET tube may be shortened for ease of airway management, reduction of mechanical deadspace, and reduction of airway resistance. However, the major contributor to increased airway resistance is the internal diameter of the ET tube. Therefore, during intubation, the largest appropriate size ET tube must be used so that the airway resistance contributed by the ET tube may be minimized. Once the ET tube is in place,

Based on Poiseuille's Law, the work of breathing increases by a factor of 16-fold when the radius (r) of the airway is reduced by half its original size.

Airway resistance varies directly with the length and inversely with the diameter of the airway or ET tube.

TABLE 1-1 Clinical Conditions That Increase Airway Resistance			
Туре	Clinical Conditions		
COPD	Emphysema Chronic bronchitis Asthma Bronchiectasis		
Mechanical obstruction	Postintubation obstruction Foreign body aspiration Endotracheal tube Condensation in ventilator circuit		
Infection	Laryngotracheobronchitis (croup) Epiglottitis Bronchiolitis		

© Cengage Learning 2014

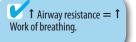
its patency must be maintained, as secretions inside the ET tube greatly increase airway resistance.

Besides the ET tube, the ventilator circuit may also impose mechanical resistance to airflow and contribute to total airway resistance. This is particularly important when there is a significant amount of water in the ventilator circuit due to condensation. Chapter 4 describes the use of pressure support ventilation (PSV) to compensate for the effects of airflow resistance and to augment spontaneous tidal volume during mechanical ventilation.

Airway Resistance and the Work of Breathing (ΔP)

Airway resistance is calculated by Pressure Change

$$Raw = \frac{\Delta P}{\dot{V}}$$

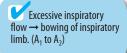

Raw = airway resistance

 ΔP = pressure change (Peak Inspiratory Pressure – Plateau Pressure)

$$\dot{V} = Flow$$

The pressure change (ΔP) in the equation reflects the work of breathing imposed on the patient. Since airway resistance is directly related to pressure change (the work of breathing), an increase in airway resistance means the patient must exert more energy for ventilation. In a clinical setting, relief of airflow obstruction is an effective way to reduce the work of breathing (Blanch et al., 2005; Myers, 2006).

If pressure change (work of breathing) in the equation above is held constant, an increase in airway resistance will cause a decrease in flow and subsequently a decrease


5

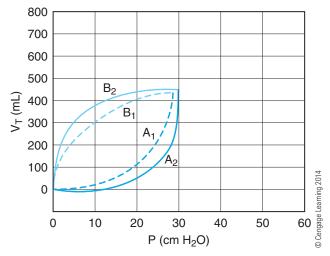
hypoventilation: Inadequacy of ventilation to remove CO₂. The arterial PCO₂ is elevated in conditions of hypoventilation.

ventilatory failure: Failure of the respiratory system to remove CO₂ from the body resulting in an abnormally high PaCO₂.

oxygenation failure: Failure of the heart and lungs to provide adequate oxygen for metabolic needs.

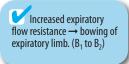
An increased bowing of the P-V loop suggests an overall increase in airflow resistance.

in minute ventilation. This is because airway resistance and flow in the equation are *inversely* related. In a clinical setting, **hypoventilation** may result if the patient is unable to overcome the airway resistance by increasing the work of breathing.


As a result of chronic air trapping, patients with chronic airway obstruction may develop highly compliant lung parenchyma. These patients use a breathing pattern that is deeper but slower. On the other hand, patients with restrictive lung disease (low compliance) breathe more shallowly but faster, since airflow resistance is not the primary disturbance in these patients.

Effects on Ventilation and Oxygenation

The work of breathing imposed on a patient is increased when airway resistance is high. This creates a detrimental effect on the patient's ventilatory and oxygenation status. If an abnormally high airway resistance is sustained over a long time, fatigue of the respiratory muscles may occur, leading to ventilatory and oxygenation failure (Rochester, 1993). **Ventilatory failure** occurs when the patient's minute ventilation cannot keep up with CO_2 production. **Oxygenation failure** usually follows when the cardiopulmonary system cannot provide adequate oxygen needed for metabolism.


Airflow Resistance

The airflow resistance of a patient-ventilator system may be monitored using the pressure-volume (P-V) loop display on a ventilator waveform display (Waugh et al., 2007). An increased bowing of the P-V loop suggests an overall increase in airflow resistance (Figure 1-1). The increase in airflow resistance may be caused by excessive inspiratory flow or increased expiratory flow resistance.

FIGURE 1-1 Increased bowing (from dotted to solid lines) of the pressure–volume loop suggests an increase in airflow resistance. Bowing of inspiratory limb (from A_1 to A_2) may be caused by excessive inspiratory flow. Bowing of the expiratory limb (from B_1 to B_2) may be caused by an increase in expiratory flow resistance such as bronchospasm.

Copyright 2013 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s). Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

When the inspiratory flow exceeds a patient's tidal volume and inspiratory time requirement, bowing of the inspiratory limb may result (line A_2). In situations where the expiratory airflow resistance is increased (e.g., bronchospasm), bowing of the expiratory limb (line B_2) may occur.

LUNG COMPLIANCE

lung compliance: The degree of lung expansion per unit pressure change.

Lung compliance is volume change (lung expansion) per unit pressure change (work of breathing), and it is calculated by $C = \Delta V/\Delta P$, where C = compliance, $\Delta V =$ volume change, and $\Delta P =$ pressure change. Most ventilators can measure and show the static and dynamic compliance values on the data or graphic display. A method to measure and calculate static and dynamic compliance is outlined in Table 1-2.

refractory hypoxemia: A persistent low level of oxygen in blood that is not responsive to medium to high concentration of inspired oxygen. It is usually caused by intrapulmonary shunting.

plateau pressure: The pressure needed to maintain lung inflation in the absence of airflow.

peak inspiratory pressure: The pressure used to deliver the tidal volume by overcoming nonelastic (airways) and elastic (lung parenchyma) resistance.

Compliance Measurement

Abnormally low or high lung compliance impairs the patient's ability to maintain efficient gas exchange. Low compliance typically makes lung expansion difficult. High compliance induces incomplete exhalation, air trapping, and reduced CO₂ elimination. These abnormalities are often contributing factors to the need for mechanical ventilation.

Low Compliance. Low compliance (high elastance) means that the volume change is small per unit pressure change. Under this condition, the lungs are *stiff* or *noncompliant*. The work of breathing is increased when the compliance is low. In many clinical situations (e.g., acute respiratory distress syndrome or ARDS), low lung compliance is associated with **refractory hypoxemia**.

TABLE 1-2 Method to Measure Static and Dynamic Compliance(1) Obtain corrected expired tidal volume.(2) Obtain plateau pressure by applying inspiratory hold or occluding the exhalation port at
end-inspiration.(3) Obtain peak inspiratory pressure.(4) Obtain positive end-expiratory pressure (PEEP) level, if any.
Static Compliance = $\frac{Corrected Tidal Volume}{(Plateau Pressure - PEEP)}$
Dynamic Compliance = $\frac{Corrected Tidal Volume}{(Peak Inspiratory Pressure - PEEP)}$

© Cengage Learning 2014

TABLE 1-3 Clinical Conditions That Decrease the Compliance			
Type of Compliance	Clinical Conditions		
Static compliance	ARDS Atelectasis Tension pneumothorax Obesity Retained secretions		
Dynamic compliance	Bronchospasm Kinking of ET tube Airway obstruction		

© Cengage Learning 2014

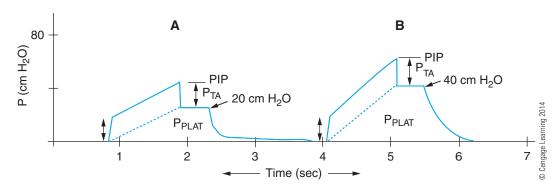
Lung compliance = 1 Work of breathing.

In extreme high compliance situations, exhalation is often incomplete due to reduced elastic recoil of the lungs.

Static compliance reflects the elastic properties (elastic resistance) of the lung and chest wall.

Dynamic compliance reflects the airway resistance (nonelastic resistance) and the elastic properties of the lung and chest wall (elastic resistance). Low compliance measurements are usually related to conditions that reduce the patient's functional residual capacity. Patients with noncompliant lungs often have a restrictive lung defect, low lung volumes, and low minute ventilation. This condition may be compensated for by an increased frequency. Table 1-3 shows some examples that lead to a decreased compliance measurement.

High Compliance. High compliance means that the volume change is large per unit pressure change. In extreme high compliance situations, exhalation is often incomplete due to lack of elastic recoil by the lungs. Emphysema is an example of high compliance where the gas exchange process is impaired. This condition is due to chronic air trapping, destruction of lung tissues, and enlargement of terminal and respiratory bronchioles.


High compliance measurements are usually related to conditions that increase the patient's functional residual capacity and total lung capacity. Patients with extremely compliant lungs often develop airflow obstruction, incomplete exhalation, air trapping, and poor gas exchange.

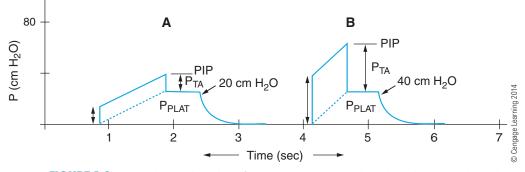
Static and Dynamic Compliance

Assessment of compliance can be divided into static compliance and dynamic compliance measurements. The relationship and clinical significance of these measurements are discussed in the following sections.

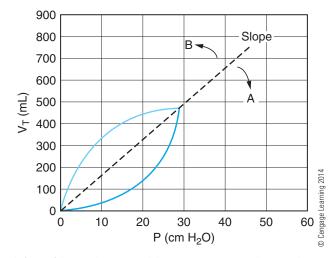
Static Compliance. Static compliance is calculated by dividing the volume by the pressure (i.e., plateau pressure) measured when the flow is momentarily stopped. When airflow is absent, airway resistance becomes a non-factor. Static compliance reflects the elastic resistance of the lung and chest wall.

Dynamic Compliance. Dynamic compliance is calculated by dividing the volume by the pressure (i.e., peak inspiratory pressure) measured when airflow is present. Since airflow is present, airway resistance becomes a factor in the measurement of dynamic compliance. Dynamic compliance therefore reflects the condition of airway

FIGURE 1-2 In conditions where the lung compliance is decreased (e.g., atelectasis), the plateau pressure (P_{PLAT}) and peak inspiratory pressure (PIP) are both increased (from A to B).

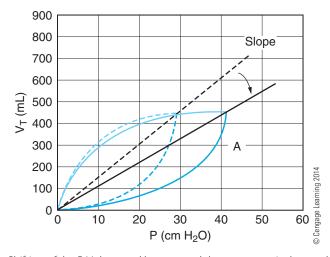

resistance (nonelastic resistance) as well as the elastic properties of the lung and chest wall (elastic resistance).

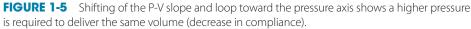
Conditions causing changes in plateau pressure and static compliance invoke similar changes in peak inspiratory pressure and dynamic compliance.


When the airflow resistance is increased (e.g., bronchospasm), the peak inspiratory pressure is increased while the plateau pressure stays unchanged. **Plateau and Peak Inspiratory Pressure.** In general, conditions causing changes in plateau pressure and static compliance invoke similar changes in peak inspiratory pressure and dynamic compliance. For example, atelectasis causes an increase of plateau and peak inspiratory pressures (Figure 1-2, A to B). Since the plateau and peak inspiratory pressures are increased, the calculated static and dynamic compliance measurements are decreased. When atelectasis is resolved, the plateau and peak inspiratory pressures return to normal (Figure 1-2, B to A).

In conditions where the airflow resistance is increased (e.g., bronchospasm), the peak inspiratory pressure is increased while the plateau pressure stays unchanged (Figure 1-3, A to B). Since the peak inspiratory pressure is increased, the dynamic compliance is decreased. The static compliance stays the same because there is no change in the plateau pressure. When bronchospasm is resolved, the peak inspiratory pressure and dynamic compliance measurements return to their previous states. (Figure 1-3, B to A).

Pressure-Volume Loop. Since compliance is determined by $\Delta V/\Delta P$, the P-V loop is essentially a "compliance loop," and it provides useful information on the characteristics of a patient's compliance. Figure 1-4 shows a P-V loop during a mandatory


FIGURE 1-4 Shifting of the P-V slope toward the pressure axis (A) indicates a decrease in compliance. Shifting of the P-V slope toward the volume axis (B) indicates an increase in compliance.


A shift of the slope toward the pressure axis indicates a decrease in compliance.

A shift of the slope toward the volume axis indicates an increase in compliance. breath. A slope is drawn from the beginning point dividing the inspiratory limb and the expiratory limb. A shift of the slope toward the pressure axis indicates a decrease in compliance. A shift of the slope toward the volume axis indicates an increase in compliance (Waugh et al., 2007).

In another P-V loop (Figure 1-5), a shift of the slope and the entire P-V loop toward the pressure axis shows an increase in pressure ($\uparrow \Delta P$) required to deliver the same volume (ΔV). This condition shows a decrease in compliance ($\downarrow C$) (Waugh et al., 2007).

Compliance measurements should be made so that a trend can be established. Interpretation is of little value with a single compliance measurement. It is also essential not to compare static compliance with dynamic compliance measurements as this can cause erroneous and meaningless interpretations.

